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Although  the  assessment  of  toxicity  of  various  agents,  -omics  (genomic,  proteomic,  metabolomic,  etc.)
data  has  been  accumulated  largely,  the  acquirement  of toxicity  information  of  variety  of molecules
through  experimental  methods  still  remains  a  difficult  task.  Presently,  a systems  toxicology  approach
that  integrates  massive  diverse  chemical,  genomic  and  toxicological  information  was  developed  for  pre-
diction  of  the  toxin  targets  and  their  related  networks.  The  procedures  are: (1)  by  use  of two  powerful
statistical  methods,  i.e., support  vector  machine  (SVM)  and  random  forest  (RF),  a  systemic  model  for
prediction  of  multiple  toxin–target  interactions  using  the  extracted  chemical  and  genomic  features  has
been developed  with  its  reliability  and  robustness  estimated.  And  the  qualitative  classification  of  tar-
gets  according  to  the  phenotypic  diseases  has  been  taken  into  account  to  further  uncover  the biological
meaning  of  the  targets,  as  well  as to  validate  the  robustness  of the  in  silico  models.  (2)  Based  on the
F
etwork toxicology

predicted  toxin–target  interactions,  a genome-scale  toxin–target-disease  network  exampled  by  cardio-
vascular  disease  is generated.  (3)  A topological  analysis  of  the network  is  carried  out  to identify  those
targets  that  are  most  susceptible  in  human  to topical  agents  including  the most  critical  toxins,  as well  as
to uncover  both  the  toxin-specific  mechanisms  and  pathways.  The  methodologies  presented  herein  for
systems  toxicology  will  make  drug  development,  toxin  environmental  risk  assessment  more  efficient,
acceptable  and  cost-effective.

Crow
. Introduction

With thousands of new chemicals being synthesized year by
ear, increased efforts are being devoted to evaluating their tox-
city properties. Undoubtedly, the toxicity evaluation task of such
igh volume of compounds is of fundamental importance to both
he ecosystems and human health. Normally, in silico methods
re effective ways for the job of virtual screening of unknown
olecules even before their synthesis (Pritchard et al., 2003; Wang

t al., 2008; Zhang et al., 2012), which clearly is important to
omplement the experimental approaches for reducing time and
ost, and thus accelerating the prioritization of those compounds
f interest. However, all these techniques have their inherent

imitations in either the predictivity, application domain or even
lgorithms themselves (Butina et al., 2002). More severely, most
vailable toxic data involve diverse kinds of compounds, but are

∗ Corresponding author. Tel.: +86 029 87092262.
E-mail address: yh wang@nwsuaf.edu.cn (Y. Wang).

1 These authors contributed equally.

300-483X/$ – see front matter. Crown Copyright ©  2012 Published by Elsevier Ireland L
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n Copyright ©  2012 Published by Elsevier Ireland Ltd. All rights reserved.

evaluated by a same or similar toxicological endpoint (lethal doses,
macroscopic toxicity) (Huang et al., 2009). This makes the precise
prediction of a toxin mechanism from a molecular level is often
impossible, let alone to consider the multiple toxin–targets inter-
actions.

Due to both the vastness of chemical space (toxins) and the
diversity of biological systems (targets), the prediction and char-
acterization of the two  domains’ interface is difficult. In addition,
the interaction patterns of toxins and targets are usually compli-
cated by the fact that they are not simple one-to-one events, as
one toxin may  bind to multiple target proteins, and different tox-
ins may  also bind to the same protein target with similar biological
activities (Yabuuchi et al., 2011). Thus it is compelling for consid-
ering multitarget strategies over single-target approaches to study
the complex interactions, which strategies, however, are seldom
studied at present.

Recently, several novel attempts have been made to fulfill this

goal. For instance, a chemical genomics approach whose salient
motivation is that similar ligands may  interact with similar pro-
teins has been used to explore novel bioactive molecules of a
target (Klabunde, 2007; Yamanishi et al., 2010). The network

td. All rights reserved.
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pproaches may  also provide a chance to explore complex biosys-
em interactions, which in biology have been proven useful for
rganizing and/or extracting meaningful information from high-
imensional biological data (Yu et al., 2012). And advances in
his direction should be helpful to uncover the biological signifi-
ance of ligand–target interactions. Despite of these efforts, to our
nowledge, little is known of the underlying complex interactions
etween the toxins and targets, and a systems-level characteriza-
ion of multiple toxin–target associations has not yet been reported
p to date.

Generally, the quantitative prediction of biological activities
IC50, EC50, Ki values, etc.) of chemicals should be valuable for
recise charactering these candidates. But in many cases, it is not
asy to comprehensively retrieve enough reliable biological infor-
ation for ligands, particularly for large datasets. This is also true

or the present compound–protein interactions of this work, which
re consisted of heterogeneous data of various resources with dif-
erent bioassay systems. In addition, it is also difficult to construct
n accurate model for predicting activity values of ligands due to
he unavailability of reliable and consistent activity information
rom the present available data. However, a qualitative prediction
ystem that identifies the potential toxin–target relationships may
ventually overcome the above limitations. For example, the clas-
ification methods usually do not need accurate biological data
ut a qualitative description of biological groupings of chemicals

s enough to build reasonable models. For those widely applied
athematical tools, such as the support vector machine (SVM)

nd random forest (RF), generally speaking, they are similar to
he multiple linear regression (MLR) method. The main difference
s that MLR  is mainly involved in solving linear fitting problems

hereas SVM and RF is nonlinear, which thus in most cases are
ore appropriate to biological problems due to the inherent non-

inear property in biology.
In this work, a series of computational models were established

o identify the complex toxin–target interactions. The procedures
re: firstly, by employing two powerful statistical methods, i.e.,
VM and RF, the models were constructed with their predictive
apacity evaluated by both the internal cross-validation and exter-
al tests, which ended up with good performance in both the
eliability and robustness. Subsequently, according to the appli-
ability domain (AD) and feature analysis of the models, those
ompounds predicted with high or poor accuracies were individu-
lly identified. Finally, as an example, a genome-scale toxin–target
etwork for cardiovascular diseases was generated, and the topol-
gy analysis of which may  provide us further insights into the
oxin–target interaction mechanism and specific action pathways.

. Materials and methods

.1. Building of dataset

Data for toxins and targets with their interaction information were extracted
rom the Toxin and Toxin–Target Database (T3DB, http://www.t3db.org), which cur-
ently contain over 2900 small molecules and peptide toxins, 1300 targets and more
han  33,800 toxin–target associations. The original database was manually built
rom  numerous sources, including the electronic databases, government documents,
extbooks and scientific journals following such criteria: (i) these compounds can be
ound in the home, environment or workplace with medical consequence records
ike  acute reaction, injury or death; (ii) they are routinely identified as hazardous
esources in relatively low concentrations (<1 mM for some, <1 �M for others); (iii)
hey  appear on multiple toxin/poison lists provided by the government agencies or
he  toxicological and medical literature; (iv) these substances must be identified as
pecific toxic components with known chemical structures.

Since some molecular descriptors of chemicals and peptides cannot be cal-
ulated, two kinds of toxic substances, i.e., arsenic, lead, mercury, phosphorus,

estrictocin, etc., were omitted in this study. Additionally, those compounds includ-
ng sodium, potassium salts were calculated for their water-dissolved products to
btain the molecular descriptors. Finally, a data set of 26,277 toxin–target pairs
omposed of 2257 toxins and corresponding 949 targets was compiled. The names
nd ID codes of the toxins and proteins were provided in Table S1.
04 (2013) 173– 184

Supplementary material related to this article found, in the online version, at
http://dx.doi.org/10.1016/j.tox.2012.12.012.

2.2. Calculation of chemical and protein descriptors

Chemical descriptors were calculated using DRAGON 5.4 program
(http://www.talete.mi.it/index.htm), which has been proven successful in
evaluation of molecular structure–activity or structure–property relationships
(Wang et al., 2010). As a result, 1664 descriptors were calculated from 20
molecular descriptor blocks: constitutional descriptors, topological descriptors,
two-dimensional (2D) autocorrelations, molecular properties et al. (with details
referred to DRAGON manual). After eliminating those descriptors that were
not available for each molecule or were constant values for all molecules, 1547
molecular descriptors were finally adopted in the subsequent processing (Table
S2).

Supplementary material related to this article found, in the online version, at
http://dx.doi.org/10.1016/j.tox.2012.12.012.

The dipeptide composition was used to transform the variable length of pro-
teins to the fixed length feature vectors, which has already been used in the protein
structural classifications, compound–protein interaction predictions and protein
subcellular localizations fields (Yabuuchi et al., 2011). In our previous work, we also
adopted the dipeptide composition-based descriptors to predict the drug–target
interactions (Yu et al., 2012). Dipeptide composition encapsulates information about
the fraction of amino acids and their local order, which gives a fixed pattern length
of  400 (20 × 20). The fraction of each dipeptide was calculated using the following
equation:

Fraction of dep(i) = total number of dep(i)
total number of all possible dipeptides

(1)

where dep(i) is one dipeptide i of 400 dipeptides.

2.3. Construction of training and test sets

To distinguish the interacted toxin–target pairs from the non-interaction ones,
an  experimental dataset including both positive and negative samples which
were represented by concatenating chemical descriptors and protein descriptors
(1547 + 400 dimensions) was firstly established. This dataset was then split into
two subsets, i.e., a training set used to build the model and an independent test set
to  validate the model’s accuracy. According to whether the toxin and/or the target
in  the test set were in the training set or not, we  designed four models: Model I for
“general” prediction (all toxins versus all targets); Model II for new-toxins versus
known-targets; Model III for known-toxins versus new-targets; Model IV for new-
toxins versus new-targets. Toxins and targets in the training set are called ‘known’
whereas those not in the training set are called ‘new’.

In  details, the training and test sets of the four models were produced as fol-
lows: (1) creating the positive training and test sets. Firstly, an initial positive test
set and an initial positive training set were obtained by randomly splitting the whole
positive samples. Then, for Model I, the initial positive training and test sets were
directly used as final positive training and test sets, respectively. For Models II and
III,  the final subdata sets were generated by removing the samples of known tox-
ins/new targets (or the new toxins/known targets) in the initial positive test and
training sets. And deleting the samples containing the known toxins and targets
from the initial positive test set generated the final subsets of Model IV. (2) Creating
the  negative training and test sets. As information about non-interaction pairs was
unavailable, we  randomly generated the negative samples from the unknown inter-
action pairs not overlapping with those interaction pairs. To ensure the balance of
positive and negative data, an equal number of negative samples were added to each
positive training and test sets by randomly choosing the unknown interactions in
the corresponding positive training or test sets. As a result, for Model I, II, III and IV,
their training sets contained 42,044, 42,250, 41,942, 39,816 samples respectively,
and  the test sets contained 10,510, 10,304, 10,612 and 290 samples respectively. To
avoid the attributes in greater numeric ranges dominating those in smaller numeric
ranges, these descriptor vectors were separately scaled to the range of −1 to 1.

2.4.  Support vector machine

The support vector machine developed by Vapnik (1998) is a well-known large
margin classifier. Due to its remarkable generalization performance, it has been
used in bioinformatics and cheminformatics (Yu et al., 2012). The notable feature
of  SVM is that it explicitly relies on the structure risk minimization (SRM) princi-
ple  from statistical learning theory (Cristianini and Shawe-Taylor, 2000), which is
superior to the traditional empirical risk minimization (ERM) principle employed
in  conventional neural networks (Jiang et al., 2006). SVM classification is based on
constructing a maximal margin hyperplane in the high multidimensional space that

optimally separates two different groups. The maximal margin is defined as the
closest distance from any point to the separating hyperplane.

To describe an SVM precisely, suppose our data are given as a set of labeled
training vectors (xi , yi), i = 1, . . ., m)  that are classified to two classes (yi ∈ {−1, 1}) (1
and −1, in our case, representing the interaction and non-interaction toxin–target

http://www.t3db.org/
http://dx.doi.org/10.1016/j.tox.2012.12.012
http://www.talete.mi.it/index.htm
http://dx.doi.org/10.1016/j.tox.2012.12.012
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airs,  respectively) and each of vector is an m-dimensional feature vector (xi =
x1

i
, x2

i
, . . . , xm

i
)). Using this notation an SVM classifier is produced as follows:

 (x) = sign

(
n∑

i=1

˛iyik(xi, x) + b0

)
(2)

here x is the new object to be classified, n is the number of the training samples,
(x)  is a decision function and k(xi , x) is a kernel function that is used to measure
he similarity between two samples. A popular radial basis function (RBF) was  used
n  this research. The constants b0 and ˛i are obtained by solving a quadratic pro-
ramming problem. A new toxin–target pair is then classified as positive (negative)
f  f(x) is positive (negative). In this study, the SVM classification was  conducted by
sing the LIBSVM suite of program (http://www.csie.ntu.edu.tw/∼cjlin/libsvm). The
arameters of the SVM with the radial basis function (RBF) kernel were optimized
sing a grid search (Hsu et al., 2003).

.5. Random forests

Random forests method is a non-parametric machine-learning algorithm based
n model aggregation ideas (Breiman, 2001), which is effective for tracking the clas-
ification and regression tasks in many scientific areas (Svetnik et al., 2003). It is

 combination of randomized decision trees, which ensemble produces a corre-
ponding number of outputs aggregated to obtain one final prediction. The training
lgorithm of the RF for classification can be summarized as follows: (i) Select N
ootstrap samples {B1, B2, . . ., BN} from the initial samples. (ii) Grow an unpruned
ree Tp (p = 1, . . .,  N) with each training set Bp . At each node, randomly sample the
ubset of input variables rather than all of the predictors to determine the best split.
he  tree is grown to the maximum size and not pruned back. (iii) Predict new data
y  majority voting of the N trees. During the training process, RF ensures its own
eliable statistical characteristics via the use of Out-Of-Bag (OOB) samples. The sam-
les in the original data set that do not occur in a bootstrap sample are called OOB
amples. For each OOB sample, the predicted values of the trees that have not been
uilt using this OOB sample are calculated. Then, aggregate the OOB predictions and
alculate the error rate, namely, the OOB estimate of error rate.

Additionally, one of the most importance features of RF is the outputs of the
ariable importance. To estimate the variable importance for a special variable j, the
alues of the jth variable are randomly permuted for the OOB samples. Then the
easure for the jth variable is simply M − Mj , where M is the average margin based

n  the OOB prediction and Mj is the average margin based on the OOB prediction
ith the jth variable permuted. For classification problem, the margin is replaced by

he  prediction accuracy. If substantially decreased prediction accuracy is produced,
t  indicates that the variable j has strong association with the response.

In  this work, the Random Forest soft package developed by Leo
reiman et al. was used to build the RF prediction models (available at
ttp://www.stat.berkeley.edu/users/breiman/). Default settings were used for
he  parameters: 500 for the number of trees and the square root of the total number
f  variables for the number of randomly selected variables, respectively.

.6. Performance evaluation

With the purpose of deriving reliable in silico models, both internal and external
alidations methods were applied. Furthermore, all predictive models were evalu-
ted  and verified with 5-fold cross-validation. By using the internal validation, the
raining set was firstly split into five approximately equal-sized subsets randomly,
here four subsets were selected as the training set to develop a model and the

emaining samples as test set. This process was  repeated five times to ensure every
ubset can be predicted as a validation set once. Meanwhile, external validations
ere performed by using different test sets for all models. Finally, the performance

f  the models built by RF and SVM methods were compared.
The prediction performance in the classification system was  evaluated by sev-

ral parameters. The accuracy (ACC), sensitivity (SEN), specificity (SPE) and precision
PRE) were used to measure the accuracy of overall, positive prediction, negative
rediction and the positive predictive value of the model, respectively. The ACC,
EN, SPE and PRE were calculated according to the following equations:

CC = TP + TN
TP + FP + TN + FN

(3)

EN = TP
TP + FN

(4)

PE = TN
TN + FP

(5)

RE = TP
TP + FP

(6)
ere, the TP, TN, FP and FN represent the number of true-positives, true-negatives,
alse-positives and false-negatives, respectively. Meanwhile, the performance was
valuated by using a receiver operating curve (ROC), that is, the plot of false-positive
ate (1 − SPE) versus the true-positive rate (SEN) based on the various thresholds.
n  addition to a simple output of a yes/no decision, RF and SVM predicted score was
Fig. 1. A framework for toxin–target interaction prediction.

used to estimate the SVM and RF confidence of the predicted outputs. The scoring
method of RF was  defined as the percentage of trees voting for “yes” (interaction).
The SVM score is based on the idea that samples lying closer to the hyperplane have
a  larger probability of being misclassified than examples lying far away (Rüping,
2004). The flowchart of the modeling procedure is shown in Fig. 1.

2.7. Network construction

Proteins rarely function in isolation and outside the cell; instead, they operate as
part  of highly interconnected cellular networks referred to as interactome networks.
With the recent explosion of publicly available high throughput biological data,
the  analysis of networks has gained significant attentions in biological and even
toxicological fields, due to the fact that such analysis can provide a unifying language
to  describe relations within complex systems and to understand the physiological
functions. In this work, we have combined a set of systematic tools to (i) analyze the
properties of toxin–target networks, (ii) assess retrospectively and prospectively
the network-based relationships between the toxins and their targets, quantifying
ongoing trends and shifts in the discovery of toxic mechanisms, and (iii) quantify
the interrelationships between targets and disease-related gene products.

In  our work, the toxins and target proteins were used to build the toxin–target
network by Cytoscape 2.8.1, a standard tool for biological network visualization and
data integration (Smoot et al., 2011). In the visualized network, the toxin–target
network was produced by linking all toxins in the dataset and the disease-related
proteins, which were represented as nodes and intermolecular interactions. The
heterogeneous nodes corresponded to either toxins or target proteins, and edges
for the interactions between them. The edge is placed between a toxin node and
a  target node if the protein is a known target of the toxin. Finally, the quantitative
properties of these networks were analyzed by the NetworkAnalyzer (Assenov et al.,
2008)  and CentiScaPe 1.2 (Scardoni et al., 2009).

3. Results and discussion

The inherent complexity of interactions between toxins and
targets has proposed a huge challenge in the area of predictive
toxicology. Actually, the combination of many potential interac-
tions and various endpoints contributing to an overall effect has
always determined that the prediction of such toxicity is a Her-

culean task. In the present work, firstly, we built and evaluated four
in silico models developed by SVM and RF approaches. Then based
on the combinational assessments of the predicted results, a com-
prehensive toxin–target network was constructed and analyzed

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.stat.berkeley.edu/users/breiman/
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Table 1
Statistics of the prediction performances.

Model I Model II Model III Model IV Average

SEN (SVM/RF)
Training 94.62% 94.84% 94.87% 94.81% 94.79%
Test 94.45% 94.50% 94.87% 95.04% 94.72%

SPE  (SVM/RF)
Training 95.62% 78.38% 60.38% 26.90% 65.32%
Test 95.01% 82.90% 41.54% 11.72% 57.79%

PRE  (SVM/RF)
Training 92.65% 92.98% 92.71% 92.61% 92.74%
Test 90.15% 90.34% 90.80% 90.04% 90.33%

ACC  (SVM/RF)
Training 87.97% 92.29% 92.80% 91.72% 91.20%
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Test 82.23% 

AUC  (SVM/RF)
Training 92.79% 

Test 90.56% 

o predict more potential interactions between toxins and tar-
ets.

.1. Model evaluation and comparison

The statistical parameters SEN, SPE, PRE, ACC and the AUC (area
nder the ROC curve) were used to estimate the performance of the
erived models, as shown in Table 1. In order to obtain accurate
omparisons, the SVM and RF models were built with the same
raining and test sets.

As seen from Table 1, all the models evaluated by the internal
ve-fold cross-validation show significantly consistent prediction
erformances: an average SEN of 94.79% and 94.72% for the binding
atterns, an average SPE of 92.74% and 90.33% for the non-binding

nteractions, an average PRE of 92.89% and 90.74%, an average ACC
f 93.76% and 92.53%, as well as an average AUC of 97.79 and 97.98,
espectively. Further comparison reveals that RF models are rela-
ively worse in SEN, SPE, PRE and ACC than SVM models except RF

odel IV, which is slightly better in SEN (95.04%) than SVM Model
V (94.81%). For purpose of evaluating the performance, the rele-

ant ROC curves for SVM and RF models were calculated and drawn
n Fig. 2. The results demonstrate that the SVM method possesses
uite good power on detecting toxin–target interactions with high
rue-positive rates versus low false-positive rates based on the

ig. 2. ROC curves obtained by five-fold cross-validation for the SVM (red) and RF meth
eader  is referred to the web version of the article.)
86.53% 95.78% 98.62% 90.79%
93.11% 92.87% 92.77% 92.89%
90.73% 91.16% 90.52% 90.74%

prediction score for various threshold values. For instance, in the
SVM Model I, when the true positive rate possesses 40% or 80%, the
corresponding false positive rate is as low as ∼2% or ∼3%. In conclu-
sion, the obtained models are satisfactory for both the training and
test sets, with no evident overfitting or over training phenomenon,
exhibiting strong robustness and capability to predict the multiple
toxin–target interactions.

Even with excellent fitness and predictions in the training pro-
cess, the models may  still lack a generalization ability for novel data.
Therefore, a reliable validation procedure, i.e. an external testing of
the models should be carried out to evaluate the real predictive
power of the models and confirm the inexistence of chance cor-
relations. Here, these models were validated by four independent
external validations in order to guarantee all models using different
test sets.

As a result, the predictability performance of the general dataset
(test set I, Model I) by SVM method is the best, as reflected by
the statistical values (the SEN of 95.62%, the SPE of 87.97%, the
PRE of 88.83% and the ACC of 91.80%). This result is similar to
that of the internal five-fold cross-validation, unveiling that the

obtained models are unlikely to be over-fitted. For test set II
(new toxins–known targets dataset, Model II) and test set III (new
targets–known toxins dataset, Model III), the prediction accura-
cies of the SVM models are 78.38% and 60.38% for SEN, 92.29% and

ods (green). (For interpretation of the references to color in this figure legend, the
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Fig. 3. ROC curves obtained by external validation for the four models.

2.80% for SPE, 91.05% and 89.35% for PRE, 85.34% and 76.59% for
CC, as well as 93.79 and 84.91 for AUC, respectively.

These statistics demonstrate that the SVM models are more suit-
ble to set II than set III, similarly as the RF models (the AUC for set
I and set III is 93.09 and 80.60, respectively). This may  be due to
he smaller information space of the targets compared with the
oxins in the training set. Compared with the first three test sets,
he prediction capability of the test set IV (new toxins–new targets
ataset, Model IV) is relatively weak, as demonstrated by the SEN of
6.90%, the SPE of 91.72%, the PRE of 76.47% and the ACC of 59.31%.
he lack of sample size of dataset IV to represent the general cases
ay  lead to its poor prediction performance when compared with

he first three models (Yamanishi et al., 2008).
The aforementioned results suggest that all models could span

lmost the entire performance space and their high predictive
ower may  depend heavily on the composition of the test set. The
OC curves of each model based on the external validation were
lotted in Fig. 3. Parameters in each model are chosen by the AUC
core as an objective function. According to these scores (from 97.05
o 67.75), SVM models exhibit the most potent prediction ability for
et I, followed by Set II, Set III and Set IV.

For RF models, the external set I is relatively worse than that of
VM models in SEN, SPE and ACC. In contrast, the set II of RF model
resents better statistical results in SEN, while the sets of III and IV
f RF models all slightly outperform the SVM models both in SPE
nd PRE. From these results we can see that the predictive abili-
ies of SVM and RF models are quite similar to each other despite
f the slight difference, both demonstrating proper reliability and
obustness.

In addition, all models accurately indentified those neg-
tive samples (non-interaction) with a very high specificity
82.23–98.62%) of all the datasets, though the negative samples
ere initially randomly produced. However, compared with this
igh specificity, the sensitivity is low, especially when the toxins
r/and targets information is insufficient in the models. One expla-
ation for the low sensitivity is that the actual non-interaction
pace is very huge compared with the interaction space, making
t much more easily to capture the non-interaction pairs than the
nteraction pairs. This, from a statistical point of view, reveals that

 toxin binding to the target is quite specific, thus to find a new
nteraction toxin–target pair by chance should be extremely diffi-
ult. Although the sensitivities are low in both Model III and Model

V, reliable predictions are still possible due to the high precision
f 90.77% and 89.47% of RF method. In another word, our method
rovides an effective way to eliminate as many false positive pre-
ictions as possible and to obtain a high enrichment of true positive
04 (2013) 173– 184 177

in the predicted interaction sets. All these outcomes demonstrate
that our models exhibit proper performance and universality for
multiple toxin–target interactions prediction.

The results presented above illustrate that the predictive power
of SVMs and RFs is slightly different based on the same training
and test sets. Although both SVMs and RFs are effective resources
for building accurate classifiers, SVMs show superiority to RFs in
predicting the toxin–target interactions. Firstly, SVMs show a bet-
ter generalization ability to build models. The reason may  be that
SVMs method embodies the structural risk minimization principle,
which minimizes an upper bound of the generalization error rather
than minimizes the training error. Secondly, SVMs allow us to use
a tensor product space, with no extra calculation time with respect
to the joint space, and provide a versatile choice of similarity meas-
ures for targets and toxins (Yu et al., 2012). In addition, the SVMs
algorithm appears to be marginally more accurate, and especially it
can be applied when some experimental data are missing. In Mod-
els II, III and IV with the toxins or/and targets data not included
in the models, SVMs performed obviously better with accuracy of
85.34%, 76.59%, 59.31% than RFs with corresponding accuracy of
84.71%, 68.66% and 55.17%, respectively. Typically, SVM algorithm
uses a portion of training set as support vectors for classifications. If
the missing experimental data are non-support vectors, they won’t
affect the model performance (Cheng et al., 2011).

Although SVMs apparently outperform RFs, RFs are still an effec-
tive method with some advantages over SVMs. The algorithm is
robust against overfitting since each tree in the ensemble grows
on an independently bootstrapped subsample of the data. As a
large number of low-correlated decision trees are averaged, RFs
can achieve both low bias and low variance. Actually, RFs provide
a reliable error estimate by using the so-called OOB data. The pre-
selection of variables is not required because the RF algorithm is
quite robust to noise in predictors. As only a limited random num-
ber of predictors are used to seek for the best split at each node, the
diversity of the forest is produced and the cost of the computational
load is reduced. Pruning the trees is not necessary which results
in low bias and high variance trees and also reduced computation
time (Grimm et al., 2008). As we  investigate the computational cost
for SVMs and RFs methods, RF classifier also cost less time when
achieving similar good performance. In this work, all the programs
were implemented on a Dell computer (Redhat Linux Operating
System) with 2.8 GHz AMD  Phenom (tm) II X6 1055T processer
and 12 GB RAM. The total execution time of the cross-validation
experiment of SVM (24 h) is much longer than that of the RF (9 h)
approach. Finally, a T test was  performed to estimate whether our
methods to evaluate the difference of our models’ prediction ability
are good or not. With this test, the significance can be analyzed and
used to distinguish between any two  models. We  take the overall
accuracy ACC as the test parameter duo to that it is the general sta-
tistical parameter to evaluate the predictive power of a model. All
the obtained results show that there exists extremely big differ-
ence between the prediction results (ACC) of the four models with
P-values <0.01. This demonstrates that the predictive capacities of
the four models we built are extremely different, and subject to
such an order of Model I > Model II > Model III > Model IV.

3.2. Applicability domain and feature analysis

The applicability domain is of crucial importance to provide
good accuracy estimation of the classification models, which is
obtained by visualizing the samples in a multidimensional space. It
provides additional information to identify which samples are clas-

sified with the best accuracy or unreliable predictions. The selection
of the most reliable prediction can dramatically improve the per-
formance of the methods while decreasing the coverage of the
predictions (Tetko et al., 2006). For this purpose it is important
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these statistical models may  give some insights into the toxicologi-
Fig. 4. Distribution of the Model I over the first three PCs.

o know the proportion of samples that fall within the AD of a
ertain model. Therefore, in order to reduce the redundant infor-
ation and ensure that useful information can be processed in a

ow-dimensional space, the principle component analysis (PCA)
Wold et al., 1987) was applied to analyze the ADs of these
btained models. This process is achieved by transforming the orig-
nal matrix to a smaller data set with uncorrelated variables, i.e.,
rincipal components (PCs). Fig. 4 displays the training and test
amples visual distribution of Model I over the first three PCs.
arge overlap can be found between the two kinds of samples
n “chemical–biological” space, indicating good structure diversity
nd versatility of chemical and biological properties among them.
his provides good foundation for screening toxins and target pro-
eins with interactions. Moreover, the original 1947 components
ave been compressed and analyzed by PCA resulting in 10 PCs
explaining 63.58% of the total variance), in which the obtained first

hree PCs account for about 51.0% of the total variance. The descrip-
ions for these PCs are shown in Fig. 5. All these results demonstrate

Fig. 6. The relative importance of descriptors: (A) the top 30 ch
Fig. 5. The pareto chart of the variance explained by the first 10 principal compo-
nents for the experimental dataset.

that the applicability domain of these models is wide enough to
overlap most of the whole “chemical–biological” space.

The accuracy and quality of these models are greatly affected
by a very large number and diverse types of molecular descrip-
tors (1547 dimensions) and protein descriptors (400 dimensions)
in the context of toxin–target pairs. On the basis of the vari-
able importance outputs of RF Model I, the top 30 chemical
and protein descriptors are picked out and shown in Fig. 6.
The top 30 chemical descriptors as shown in Fig. 6A are mainly
from five blocks including the Burden eigenvalues, 3D-MoRSE
descriptors, eigenvalue-based indices, constitutional descriptors
and GETAWAY descriptors, which are usually applied in toxicologi-
cal analysis (Zhu et al., 2008). The chemical descriptors employed in
cal behavior to bind to the specific protein target. For examples, the
Burden eigenvalues BEHe7, BEHm1, BEHp1, BEHv6, BELe3, BELe6,

emical descriptors and (B) the top 30 protein descriptors.
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Table  2
The statistical parameters of each kind of disease.

Disease SEN SPE PRE ACC AUC

Cardiovascular diseases 95.02% 84.52% 85.77% 89.72% 96.33%
Congenital, hereditary, neonatal diseases abnormalities 80.77% 89.47% 63.64% 87.86% 92.68%
Digestive system diseases 90.68% 85.60% 75.36% 87.26% 93.52%
Endocrine system diseases 91.76% 85.46% 79.60% 87.87% 95.40%
Female urogenital diseases and pregnancy complications 90.48% 84.00% 78.08% 86.50% 93.27%
Hemic and lymphatic diseases 96.77% 85.19% 83.33% 90.21% 95.64%
Immune system diseases 97.91% 84.38% 89.13% 92.05% 96.18%
Male  urogenital diseases 93.47% 86.30% 87.07% 89.86% 96.37%
Mental disorders 93.50% 89.34% 88.21% 91.25% 96.55%
Musculoskeletal diseases 96.44% 84.52% 91.04% 91.91% 96.00%
Neoplasms 96.27% 84.93% 87.20% 90.79% 96.36%
Nervous system diseases 94.53% 86.33% 87.12% 90.38% 96.11%
Nutritional and metabolic diseases 93.52% 86.83% 86.19% 89.96% 97.30%
Pathological conditions, signs and symptoms 94.77% 87.35% 85.29% 90.59% 96.27%
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Respiratory tract diseases 92.54% 

Skin  and connective tissue diseases 98.12% 

Substance-related disorders 92.36% 

ELm2, BELp1, BELp2, BELv5 and BELv6 are descriptors charac-
erizing the molecular size, polarizability and electronegativity.
he 3D-MoRSE descriptors Mor01e, Mor25e, Mor05u, Mor22u and
or05v mainly reflect the molecular size and 3D information.

learly molecular size, shape, charge and polarity are important
or the ligand to bind with its targets (Quillin et al., 2000). Besides,

any metals, particularly those heavy ones are toxic, thus the nHM
number of heavy atoms) makes significant contributions to the
lassification models. Fig. 6B shows the relative contribution of the
0 most important protein descriptors to the classification model.
he most important descriptor for our model is SP, describing the
ombination of Ser and Pro. Except for SP, the PL, KN and FP are also
rucial for the classification, which can be explained by the combi-
ation of Pro and Leu, Lys and Asn, Phe and Pro, respectively. This
esult shows that dipeptide composition, which provides informa-
ion about amino acid composition as well as the local order of
mino acids, is also useful index for the classifications (Yu et al.,
012), and is a better feature as compared with the amino acid com-
osition alone for constructing the feature of a protein sequence.
eanwhile, the average of mean decrease in accuracy of all proetin

0.20%) is higher than that of the chemicals (0.05%), confirming the
revious conjecture that the protein descriptors are more relevant
han chemical indices.

To further expand the application of our models in real applica-
ion cases, we have adopted a classification scheme and separated
argets into 17 categories according to the phenotypic diseases
Table S3). Here, the known 319 disease-associated targets were
elected to perform the analysis by the general SVM Model I. All
he statistical parameters for each phenotype are acceptable as
hown in Table 2. We  can see that the resulted ACC scores for
hese diseases range from 86.50% to 93.24%, all exhibiting good per-
ormance. Interestingly, it seems that the best result with ACC of
3.24% is the targets that are related to the skin and connective
issue diseases, while the worst is the female urogenital diseases
nd pregnancy complications-related proteins (ACC = 86.50%). This
eans that cutaneous reactions upon contacting with a sub-

tance can be relatively accurately predicted, but long term effects
uch as the congenital, hereditary, neonatal diseases abnormalities
ACC = 87.86%) and the female urogenital diseases and pregnancy-
elated proteins are relatively poor predicted. In addition, the
mmune system diseases (ACC = 92.05%); hemic and lymphatic
iseases (ACC = 90.21%); cardiovascular diseases (ACC = 89.72%)
losely related to blood system have also been properly assessed,

s blood is responsible for transporting and directly contacting
ith toxins in body. Last but not the least, it is found that diseases
ith more sufficient target information have also been much bet-

er predicted, such as the neoplasms (ACC = 90.79%); pathological
88.13% 78.98% 89.56% 95.61%
82.56% 92.48% 93.24% 96.34%
87.20% 84.30% 89.40% 95.73%

conditions, signs and symptoms (ACC = 90.59%); as well as nervous
system diseases (ACC = 90.38%). In contrast, the diseases with less
target information such as the substance-related disorders were
predicted with relatively lower accuracy (ACC = 89.40%). All this
indicates that the improvement in both the quality and quantity
of diseases-targets information could enhance the predictability of
our models as well. In conclusion, these results illustrate that the
obtained models might be further applied to predict toxin-deduced
diseases based on the relationships of protein targets with their
phenotypic diseases.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.tox.2012.12.012.

3.3. Comprehensive prediction for potential toxin–target
interactions

Network analysis has become a cornerstone of fields as
diverse as systems biology, which is helpful for revealing the
known/unknown interactions of a given system in global view.
Recently, the emerging tools of network medicine have offered a
platform to explore systematically not only the molecular complex-
ity of a particular disease, leading to the identification of disease
modules and pathways, but also the molecular relationships among
apparently distinct (patho) phenotypes. Given the complexity of
biological system, it is important to generate networks to uncover
multiple potential interactions. Therefore, we built a compre-
hensive network for identifying multiple potential toxin–target
interactions, which, in turn, can address some fundamental prop-
erties of the proteins toward the understanding of the toxins. Here
we have selected a set of heart disease-related proteins to test the
reliability of our models, since heart disease has been ranked as
one of the major causes of mortality posing a serious threat to
human health (Gu et al., 2009). Accordingly, 51 typical drug targets,
which are related to heart disease and 2257 toxins from the T3DB
database, were used to construct the comprehensive toxin–target
interactions network by the optimal SVM Model I.

As a result, by using the top 500 scoring toxin–target inter-
actions, a network has been generated where a compound and a
protein are connected to each other if the protein is a known tar-
get of the compound (toxin–target network). Fig. 7 shows a global
view of toxin–target interactions network with color-coded nodes
(toxin: orange, protein target: blue), which contains 201 nodes and

500 edges, with 150 toxins and 51 targets. Most toxins target only a
few protein targets, but some have many protein targets. Likewise,
the protein targets also display rich landscape of interacting tox-
ins. This indicates that the availability of toxin–target interactions

http://dx.doi.org/10.1016/j.tox.2012.12.012
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ig. 7. Toxin–target interactions network (purple line: validated, cyan line: predicte
lack  triangle: important targets). (For interpretation of the references to color in t

etwork is by itself a useful compendium that reflects current and
otential multiple interactions.

Network data structures are amenable to many sophisticated
orms of computational analysis, which can uncover important,
onobvious properties of nodes and the relationships between
hem (Lee et al., 2009). Here the centralization, density, hetero-
eneity, node degree distribution and betweenness were analyzed
o investigate both the global and topological properties of this
oxin–target network (Dong and Horvath, 2007). A first general
verview of the global topological properties of the network came
rom the min, max  and average values of all computed centrali-
ies along with the diameter (13.0) and the average distance of
he network (4.48) suggests a relatively decentralized network, in

hich proteins are not strongly functionally interconnected. And

he centralization of 0.172 and density of 0.025 also indicate that
he network structure would be rather decentralized than central-
zed. Moreover, the heterogeneity value of 1.324 shows that a few
 ball: toxin, blue triangle: heart disease-related protein, black ball: important toxins,
ure legend, the reader is referred to the web  version of the article.)

nodes are more central compared to other nodes in this network,
which reveals that the toxin–target space is partial to certain toxins
and proteins.

Topological analysis of network may  offer insights into biolog-
ically relevant connectivity patterns, which may pinpoint highly
influential toxins or targets. The most essential characteristic of a
node is its degree (the number of connections or edges the node
has to other nodes), which tells us how many direct links the node
holds. In our network, of all the 51 protein targets, 19 have consid-
erable strong interactions with ≥10 toxins, and 13 protein targets
are linked to more than 15 toxins. Protein P483 (Cytochrome c oxi-
dase subunit 5A, mitochondrial) exhibits the highest number of
interactions with 39 toxins, which can be susceptibly attacked by

toxins, possibly inducing heart diseases (Wikipedia, 2009). Follow-
ing on are protein P352 (sodium/potassium-transporting ATPase
subunit alpha-2) and P177 (Cytochrome c oxidase subunit 1) with
31 and 30 toxins, respectively (black triangle in Fig. 7). Actually,
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Table  3
The representative prediction results of toxin–target interactions.

No. Toxin ID Toxin name Chemical structure Protein ID Binding score

1 T3D0028 Cyanidea C-N P531 0.9998

2  T3D1491 Aluminum antimonide Al Sb P253 0.9998

3 T3D2924 Methdilazine

N

N

S

P100 0.9996

4  T3D2408 Boron phosphidea B       P P531 0.9985

5  T3D1395 Cobalt(II) cyanidea

N

Co

N

P604 0.9985

6 T3D0332 Lead tetroxidea OPb P187 0.9983

7  T3D0037 Acrolein O P177 0.9983

8 T3D1271 Tin(II) oxide OSn P531 0.9983

9  T3D1323 Lead oxalatea

O
O

Pb

O
O

P182 0.9971

10  T3D1680 Ethyl cyanoacetatea

O

O
N

P260 0.9970

11  T3D0659 Cobalt(II) chloridea
Cl

Co
Cl P013 0.9970

12  T3D3087 Swainsonine OHN

OH OH
P818 0.9968

13  T3D0341 Mercury(II) sulfide SHg P254 0.9959

14  T3D1350 Methylmercuric dicyanamidea Hg
N

NH2

N
H

N
P177 0.9958

15  T3D0086 2,4,6-Trichlorophenol

OH

ClCl

Cl

P919 0.9958

16  T3D0330 Lead oxide OPb P177 0.9957

17 T3D0363 Mercury(II) cyanidea

N

Hg

N

P604 0.9957
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Table 3 (Continued)

No. Toxin ID Toxin name Chemical structure Protein ID Binding score

18 T3D1385 Cobalt(II) molybdenum(VI) oxide

Co2+

-O Mo O-

O

O

P189 0.9952

19 T3D1290 Boron arsenide B As P187 0.9952

20 T3D1325 Lead selenide SePb P483 0.9947

21 T3D0097 1,1,1-Trichloroethanea

Cl
Cl

Cl
P849 0.9946

22 T3D0343 Mercury(I) chloride ClHg P187 0.9942

23 T3D1491 Aluminum antimonide Al Sb P040 0.9937

24  T3D1372 Cadmium cyanidea

N

Cd

N

P483 0.9932

25  T3D2570 Lamotriginea

NH2

NN

H2N N

Cl
Cl

P827 0.9931

26  T3D0342 Mercury(II) oxide OHg P852 0.9927

27  T3D3001 Halothane
F
F F

Cl

Br P189 0.9924

28 T3D1385 Cobalt(II) molybdenum(VI) oxidea

Co2+

-O Mo O-

O

O

P013 0.9923

29  T3D1385 Cobalt(II) molybdenum(VI) oxide

Co2+

-O Mo O-

O

O

P705 0.9920

30 T3D1271 Tin(II) oxide OSn P612 0.9916

t
(
t
b
T
w
p
r
R
i
w
o
T

a Represents validated.

heir crucial roles in heart diseases have already been proven
Schwinger et al., 2003; Wikipedia, 2009). Among the 150 toxins,
oxin T3D1289 (aluminum arsenide) possesses the largest num-
er of interacting target proteins (19), followed by the toxins
3D1387 (cobalt sulfide) and T3D1859 (antimony monosulfide)
ith 15 target proteins (black ball in Fig. 7). These are exam-
les of the highly connected toxins and targets that are closely
elated to the heart disease (Linna et al., 2004; Ratnaike, 2003;
oss and Adrian, 2009) (Table S4). This result shows that toxins
nteracting with the target proteins will gain a high probabilistic
eight, which helps to prioritize target proteins and interactions

n the basis of their potential involvement in the heart disease.
he node degree distribution situation is shown in Fig. 8. This
result shows that most nodes have low degrees with only a small
number of interaction partners (hubs), which further demonstrates
that the generation of this network has almost no randomness.
Therefore, it proves again that several toxins could affect mul-
tiple targets simultaneously, while a target might also have an
impact on multiple toxins, which further synergistically influences
those pathways related to the disease of interest. In addition,
our model and its derived information provide strong theoreti-
cal evidence and explanation for multiple toxins–multiple targets

interactions phenomenon, which can be further applied to more
complex biosystems.

Supplementary material related to this article found, in the
online version, at http://dx.doi.org/10.1016/j.tox.2012.12.012.

http://dx.doi.org/10.1016/j.tox.2012.12.012
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Assenov, Y., Ramírez, F., Schelhorn, S.E., Lengauer, T., Albrecht, M.,  2008. Computing
Fig. 8. The node degree distribution of toxin–target network.

“Betweenness” as another elementary property can characterize
he importance of the node or edge in the network. It quantitatively
eflects the impact of a node exerts on the speading of the informa-
ion throughout the whole network. Betweenness has the capacity
o be located in the shortest communication paths between dif-
erent pairs of nodes that pass through the node of interest. This
roperty is also defined as traffic, and high traffic nodes are referred
o as network bottlenecks. Generally, it is important for the nodes
toxins) to have both higher degree and betweenness (Jeong et al.,
001). This is shown in all the 150 toxin nodes that most of those
odes with higher degree would have larger betweenness, and 45
f the top 55 toxins have both high degree (≥3) and betweenness
≥40); and the number is 22 out of the top 25 toxins. Highly con-
ected nodes are referred to as hubs. This implies that toxin–target

nteractions network hubs are not generated at random and that
hey on one hand tend to encode bottlenecks, and on the other hand
mpact different network regions through both direct and indirect
nteractions. In this network, many heart disease-related proteins
re found to have close relationships to toxins. In addition, it also
ndicates that if a few heart disease-related proteins are identi-
ed, other disease-related components are likely to be found in the
etwork-based vicinity.

In addition, the results show that 500 interactions between tox-
ns and targets are predicted, in which 141 (28%) interactions are
alidated in T3DB database (purple lines in Fig. 7). Our model also
redicted 359 new toxin–target interactions as shown in Fig. 7
cyan lines). An interesting finding is that about half of the 141 val-
dated interactions (73) and about three quarters (283) of the 359
ewly predicted interactions are caused by heavy metals. The rep-
esentative prediction results are presented in Table 3. It is reported
hat metal-dependent cell toxicity seems to be closely related to
on-specific binding of heavy metal cations to sulfydryl residues in
arget proteins (Panfoli et al., 2000). This is quite consistent with our
ndings in the network, which further validates the reasonability
f the constructed model.

In conclusion, our toxin–target interactions network reveals a
hallenge exists in the potential toxin–target interaction predic-
ions as many multiple relationships of toxins and targets still
emain unknown or poorly mapped up to date. Furthermore,
his framework not only builds a bridge linking the experimen-
al results and theoretical knowledge, but also demonstrates a fact
hat some drug targets are also susceptible to the attacking of
ertain toxins. This research will lead to a series of hypotheses

hat tie the toxicity of compounds to the human health, whose
alidity and applications will receive more attentions in the near
uture.
04 (2013) 173– 184 183

4.  Conclusion

In this article, we have developed four in silico models to con-
duct a system framework of multiple toxin–target interactions
from chemical, genomic and toxicological data on a large scale.
Our method is based on SVM and RF, which were both evaluated
in terms of the sensitivity, specificity, precision and accuracy. All
the obtained models were evaluated and verified by both internal
and external validations. The results show that all the SVM and RF
models exhibit reliable statistical and prediction performance, in
which the SVM models are slightly better than the RF ones. Then
the applicability domain and feature analysis were carried out to
define the area of reliable predictions and to give excellent correla-
tions of our models. In the final part of this study, a comprehensive
toxin–target interactions network analysis by using heart disease
proteins as an example offered a new framework for prediction
of potential multiple toxin–target interactions from a systematic
level. Actually, part of the interactions detected by our method has
been fully supported by experimental results (Imming et al., 2006;
Singh et al., 2006).

The characteristics of our proposed method are the following:
Firstly, this approach opens up new opportunities to comprehen-
sively understand the multiple interactions among toxin and target
proteins beyond a one-toxin/one-target simply. Secondly, our sys-
tem could be used as a fast filter in the screening of a huge number
of toxins and target proteins on a large scale. Thirdly, it is possible
to perform screening of any toxin compound against many target
proteins based on our method. Fourthly, we propose a systematic
method to predict the toxin–target interactions, even for targets
with unknown 3D structure. Fifthly, the toxin–target interactions
network can find new toxins and new target proteins simulta-
neously and infer missing links from the information of known
links. Overall, our models are computationally efficient and appli-
cable, which originality lies in the integration of chemical space,
genomic space and large-scale toxicological data in a unified frame-
work, as well as in the extraction of correlated sets of chemical
substructures and potential multiple toxin–target interactions. To
our knowledge, no previous work has possessed all these features.
Thus, it is anticipated that our prediction system may  become a
useful tool to determine new or potential toxins or correspond-
ing targets. From a technical viewpoint, toxins that target RNA or
DNA are also critical issues to consider in toxicity prediction devel-
opment. However, this is a challenging task for the common case
of very large molecular targets involving DNA, or RNA due to the
insufficiency of toxin targets information so far. Therefore, the pre-
diction of toxins that target RNA or DNA will be an extension of our
work and should be carried out lately, through which we expect to
bring about more interesting findings.
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